ENONE SYNTHESIS VIA α -PYRIDYLSELENO CARBONYL COMPOUNDS

* Akio Toshimitsu, Hiroto Owada, Sakae Uemura, and Masaya Okano Institute for Chemical Research, Kyoto University, Uji, Kyoto 611, Japan

Summary: Oxidative elimination of a-pyridylseleno carbonyl compounds affords enones in excellent yields, providing an improved method for dehydrogenation of ketones and aldehydes. These results indicate that pyridylseleno group is a better leaving group than phenylseleno group in selenoxide elimination leading to enones.

Introduction of a phenylseleno group into α position of carbonyl functionality and the following selenoxide-elimination to afford enones constitute one of the most elegant procedures for dehydrogenation of carbonyl compounds. $1-3$ Yet there have been pointed out some limitations: for instance, yields were not satisfactory in the selenoxide-elimination step for certain carbonyl compounds. We report here that the oxidative elimination of α -pyridylseleno carbonyl compounds affords enones in excellent yields,⁴ even in the cases where satisfactory results were not obtained using phenylseleno compounds. We also found that α -pyridylseleno carbonyl compounds can be obtained in good yields by the reaction of 2-pyridylselenenyl bromide, prepared in *situ* from 2,2'-dipyridyl diselenide4 and bromine, with ketones and aldehydes under acidic conditions. These two reactions may well provide an improved method for dehydrogenation of ketones and aldehydes.

In a typical reaction, a solution of bromine (1 mmol) in ethanol (2 ml) was added dropwise to a solution of 2,2'-dipyridyl diselenide (1 mmol) in ethanol (14 ml) and the resulting mixture was stirred at ambient temperature for 0.5 h. Then cycloheptanone (2 mmol) and hydrogen chloride (10 mmol; 36.5% aq. sol.) (in ethanol; 2 ml each) were added and the solution was stirred under reflux for 0.5 h. After the usual work-up, column chromatography

2105

[silica gel; hexane - ethyl acetate (2:l) as eluent] gave 2-(2'-pyridylseleno) cycloheptanone $\left[\frac{1}{2}; R^1, R^2 = -(CH_2)_4\right]$ (1.7 mmol; 84%) as a pale yellow oil. As shown in the Table, linear and cyclic ketones as well as aldehydes gave corresponding α -pyridylseleno compounds (1) in acceptable yields. The yield of (1) was not satisfactory when hydrogen chloride was not added. We succeeded in the isolation of 2-pyridylselenenyl chloride as a yellow powder from the reaction of 2,2 '-dipyridyl diselenide and sulphuryl chloride. The yield of (1), however, was not improved when 2-pyridylselenenyl chloride was used as selenenylating reagent.⁵

The best method for oxidative elimination of α -pyridylseleno ketones was found to be the ozonization of (1; R^1 =alkyl or phenyl) at -78 °C in dichloromethane followed by the addition to refluxing carbon tetrachloride. 6 As shown in the Table, enones (2) were obtained in excellent yields. Especially, for the compounds in Expts. 3 and 4, yields of (2) were higher by *cu.* 20% than those obtained when a phenylseleno group was used as a leaving group under nearly the same reaction conditions.⁷

The oxidative elimination of α -pyridylseleno aldehydes, on the other hand, was carried out using sodium periodate in methanol-water (6:1) at 23 $^{\circ}$ C 8 to give (2) in excellent yields. It should be noted here that 2-hepten-l-al [2; R^1 =H, R^2 =(CH₂)₃CH₃] was obtained in 90% yield (Expt. 7), which had been obtained only in a low yield by the oxidation of 2-phenylseleno-1-heptanal. $^{\rm 2b}$

These results clearly indicate that a pyridylseleno group is a better leaving group than a phenylseleno group in selenoxide elimination leading to enones.

	Expt.	Starting Material	Selenide (1)	Yield ^b (3)	Oxidation Method	Enone (2)	Yield ^C (3)
		1 Cyclopentanone	.SePy ^d	52	\circ_3	o	85
$\overline{2}$		Cyclohexanone	SePy	89	\circ_3		82
3		Cycloheptanone	SePy	84	$\begin{matrix}0\ 3\\0_3\end{matrix}$ e		68 100
4		Cyclooctanone	о SePy	59	0_3^{e}		94
5		Propiophenone	${\tt Ph}$ SePy	73	\circ_{3}	Ph	97
6		3-Phenyl- 1-propanal	٥ $\mathbf H$ Ph SePy	64	NaIO _A	o Ph H	83
7		1-Heptanal	SePy	53 н	NaIO ₄	o	90

TABLE. Yields of α -Pyridylseleno Carbonyl Compounds (1) and Enones (2).^a

a. Satisfactory i.r. and 1_H n.m.r. spectral data as well as combustion analytical data were obtained for all new compounds. Stereochemistry of 2 in Expts. 1~4 is Z and that in Expts. 6 and 7 is E (by 1 H n.m.r. and g.l.c retention time). b. Isolated yield. c. Determined by g.l.c. using internal standard, on the basis of 1 used. d. PySe denotes \Box $\sim N \sim S$ ee. $HNEt₂$ (1.5 mmol) was added.

Acknowledgement. We thank the Ministry of Education for the Grant-in-Aid for Special Project Research.

References and Notes

- l. For example, D. L. J. Clive, <u>Tetrahedron, 34</u>, 1049(1978); H. J. Reich, "Oxidation in Organic Chemistry, Part C", W. Trahanovsky, Ed., Academic Press, New York, 1978, p.1; H. J. Reich, Acc. Chem. Res., 12, 22(1979); and references cited therein.
- 2. For aldehyde, see for example: (a) K. C. Nicolaou, R. L. Magolda, and W. J. Sipio, Synthesis, 1979, 982; (b) D. R. Williams and K. Nishitani, Tetrahedron Lett., 21, 4417(1980); (c) M. Jefson and J. Meinwald, ibid., 22, 3561(1981).
- 3. **For the use** of benzeneseleninic anhydride, see for example; D. H. R. Barton, D. J. Lester, and S. V. **Ley, J. Chem. Sot. Perkin Trans. 1, 1980, 2209; T. G. Back, J. Orq. Chem.** ,46, 1442(1981).
- 4. It **has been** reported that a pyridylseleno group is a better leaving group than a phenylseleno group in selenoxide-elimination to give linear terminal olefins; A. Toshimitsu, H. Owada, S. Uemura, and M. Okano, Tetrahedron Lett., 21, 5037(1980).
- 5. **In the case of** phenylselenenylation of carbonyl compounds, phenylselenenyl bromide was claimed to behave primarily as a brominating agent.¹
- 6. The procedure is almost the same as that reported. 7 We used $_{\textrm{\tiny{L}}}$ (R $^{\textrm{\tiny{L}}}$ =alkyl or phenyl) (1 mmol), CH_2Cl_2 (10 ml), CCl_4 (30 ml), and (in some cases) $HNEt₂$ (1.5 mmol).
- 7. H. J. Reich, J. M. Renga, and I. L. Reich, <u>J. Am. Chem. Soc</u>., <u>97</u>, 5434 (1975).
- 8. To a MeOH (12 ml) solution of 1 (R⁺=H) (1 mmol) was added NaIO₄ (2 mmol) in H₂O (2 ml), and the resulting white suspension was stirred at 23 °C for 1 h.

(Received in Japan 9 February 1982)