ENONE SYNTHESIS VIA α -PYRIDYLSELENO CARBONYL COMPOUNDS

Akio Toshimitsu, Hiroto Owada, Sakae Uemura, and Masaya Okano Institute for Chemical Research, Kyoto University, Uji, Kyoto 611, Japan

Summary: Oxidative elimination of α -pyridylseleno carbonyl compounds affords enones in excellent yields, providing an improved method for dehydrogenation of ketones and aldehydes. These results indicate that pyridylseleno group is a better leaving group than phenylseleno group in selenoxide elimination leading to enones.

Introduction of a phenylseleno group into a position of carbonyl functionality and the following selenoxide-elimination to afford enones constitute one of the most elegant procedures for dehydrogenation of carbonyl compounds.¹⁻³ Yet there have been pointed out some limitations: for instance, yields were not satisfactory in the selenoxide-elimination step for certain carbonyl compounds. We report here that the oxidative elimination of α -pyridylseleno carbonyl compounds affords enones in excellent yields,⁴ even in the cases where satisfactory results were not obtained using phenyl-seleno compounds. We also found that α -pyridylseleno carbonyl compounds can be obtained in good yields by the reaction of 2-pyridylselenenyl bromide, prepared *in situ* from 2,2'-dipyridyl diselenide⁴ and bromine, with ketones and aldehydes under acidic conditions. These two reactions may well provide an improved method for dehydrogenation of ketones and aldehydes.

In a typical reaction, a solution of bromine (1 mmol) in ethanol (2 ml) was added dropwise to a solution of 2,2'-dipyridyl diselenide (1 mmol) in ethanol (14 ml) and the resulting mixture was stirred at ambient temperature for 0.5 h. Then cycloheptanone (2 mmol) and hydrogen chloride (10 mmol; 36.5% aq. sol.) (in ethanol; 2 ml each) were added and the solution was stirred under reflux for 0.5 h. After the usual work-up, column chromatography

2105

[silica gel; hexane - ethyl acetate (2:1) as eluent] gave 2-(2'-pyridylseleno)cycloheptanone [1; $R^1, R^2 = -(CH_2)_4$ -] (1.7 mmol; 84%) as a pale yellow oil. As shown in the Table, linear and cyclic ketones as well as aldehydes gave corresponding α -pyridylseleno compounds (1) in acceptable yields. The yield of (1) was not satisfactory when hydrogen chloride was not added. We succeeded in the isolation of 2-pyridylselenenyl chloride as a yellow powder from the reaction of 2,2'-dipyridyl diselenide and sulphuryl chloride. The yield of (1), however, was not improved when 2-pyridylselenenyl chloride was used as selenenylating reagent.⁵

The best method for oxidative elimination of α -pyridylseleno ketones was found to be the ozonization of (1; R¹=alkyl or phenyl) at -78 °C in dichloromethane followed by the addition to refluxing carbon tetrachloride.⁶ As shown in the Table, enones (2) were obtained in excellent yields. Especially, for the compounds in Expts. 3 and 4, yields of (2) were higher by ca. 20% than those obtained when a phenylseleno group was used as a leaving group under nearly the same reaction conditions.⁷

The oxidative elimination of α -pyridylseleno aldehydes, on the other hand, was carried out using sodium periodate in methanol-water (6:1) at 23 °C⁸ to give (2) in excellent yields. It should be noted here that 2-hepten-1-al [2; R¹=H, R²=(CH₂)₃CH₃] was obtained in 90% yield (Expt. 7), which had been obtained only in a low yield by the oxidation of 2-phenylseleno-1-heptanal.^{2b}

These results clearly indicate that a pyridylseleno group is a better leaving group than a phenylseleno group in selenoxide elimination leading to enones.

Ex	pt. Starting Material	Selenide (1)	Yield ^b (%)	Oxidation Method	Enone (2)	Yield ^C (%)
1	Cyclopentanone	SePy	, ^d 52	°3		85
2	Cyclohexanone	SePy	⁷ 89	0 ₃		82
3	Cycloheptanone	SeP3	84	°3 °3		68 100
4	Cyclooctanone	SePy	59	03 ^e		94
5	Propiophenone	Ph SePy	73	°3	Ph	97
6	3-Phenyl- l-propanal	Ph H SePy	64	\mathtt{NaIO}_4	Ph H	83
7	l-Heptanal	o SeP	53 Үн У	NaIO ₄	∽∽∽∽⊂ [°] _H	90

TABLE. Yields of α -Pyridylseleno Carbonyl Compounds (1) and Enones (2).^a

a. Satisfactory i.r. and 1 H n.m.r. spectral data as well as combustion analytical data were obtained for all new compounds. Stereochemistry of 2 in Expts. 1~4 is Z and that in Expts. 6 and 7 is E (by 1 H n.m.r. and g.l.c. retention time). b. Isolated yield. c. Determined by g.l.c. using internal standard, on the basis of 1 used. d. PySe denotes N See. HNEt₂ (1.5 mmol) was added. Acknowledgement. We thank the Ministry of Education for the Grant-in-Aid for Special Project Research.

References and Notes

- 1. For example, D. L. J. Clive, <u>Tetrahedron</u>, <u>34</u>, 1049(1978); H. J. Reich, "Oxidation in Organic Chemistry, Part C", W. Trahanovsky, Ed., Academic Press, New York, 1978, p.1; H. J. Reich, <u>Acc. Chem. Res.</u>, <u>12</u>, 22(1979); and references cited therein.
- For aldehyde, see for example; (a) K. C. Nicolaou, R. L. Magolda, and
 W. J. Sipio, <u>Synthesis</u>, <u>1979</u>, 982; (b) D. R. Williams and K. Nishitani, <u>Tetrahedron Lett.</u>, <u>21</u>, 4417(1980); (c) M. Jefson and J. Meinwald, <u>ibid.</u>, <u>22</u>, 3561(1981).
- For the use of benzeneseleninic anhydride, see for example; D. H. R. Barton,
 D. J. Lester, and S. V. Ley, <u>J. Chem. Soc. Perkin Trans. 1</u>, <u>1980</u>, 2209;
 T. G. Back, <u>J. Org. Chem.</u>, <u>46</u>, 1442(1981).
- 4. It has been reported that a pyridylseleno group is a better leaving group than a phenylseleno group in selenoxide-elimination to give linear terminal olefins; A. Toshimitsu, H. Owada, S. Uemura, and M. Okano, <u>Tetrahedron</u> <u>Lett.</u>, <u>21</u>, 5037(1980).
- 5. In the case of phenylselenenylation of carbonyl compounds, phenylselenenyl bromide was claimed to behave primarily as a brominating agent.¹
- 6. The procedure is almost the same as that reported.⁷ We used $\frac{1}{2}$ (R¹=alkyl or phenyl) (1 mmol), CH₂Cl₂ (10 ml), CCl₄ (30 ml), and (in some cases) HNEt₂ (1.5 mmol).
- 7. H. J. Reich, J. M. Renga, and I. L. Reich, <u>J. Am. Chem. Soc.</u>, <u>97</u>, 5434 (1975).
- 8. To a MeOH (12 ml) solution of $\frac{1}{2}$ (R¹=H) (1 mmol) was added NaIO₄ (2 mmol) in H₂O (2 ml), and the resulting white suspension was stirred at 23 °C for 1 h.

(Received in Japan 9 February 1982)